DocumentationGetting Started

Getting Started with ExoBengal

Learn how to install and use ExoBengal to explore NASA's exoplanet data in just a few minutes.

1. Installation

Install ExoBengal using pip:

Terminal

$ 

Requires Python 3.8 or higher

2. Import the Package

Import DetectExoplanet in your Python script:

from exobengal.exobengal import DetectExoplanet

3. Create a Detector

Initialize the detector (paths default to repository models/):

detector = DetectExoplanet()

4. Make a Prediction

Use the saved RandomForest model to classify a sample:

sample = [365.0, 1.0, 288.0, 1.0, 4.44, 5778, 0.1, 5.0, 100.0]
print(detector.random_forest(sample))

5. Compute ESI

Calculate Earth Similarity Index for a candidate planet:

print(detector.calculate_esi(koi_prad=1.05, koi_teq=290))

6. Train Models

Optionally retrain the bundled models:

detector.train_random_forest("data/cumulative_2025.09.20_12.15.37.csv")
# detector.train_cnn()
# detector.train_knn()

What's Next?

Continue with tutorials or jump to the API reference:

Requirements

  • Python 3.8+
  • numpy
  • pandas
  • matplotlib
  • seaborn
  • scikit-learn
  • joblib
  • tensorflow

Need Help?

If you run into any issues, here are some resources:

Interstellar
Background Music
30%