DocumentationGetting Started
Getting Started with ExoBengal
Learn how to install and use ExoBengal to explore NASA's exoplanet data in just a few minutes.
1. Installation
Install ExoBengal using pip:
Terminal
$
Requires Python 3.8 or higher
2. Import the Package
Import DetectExoplanet in your Python script:
from exobengal.exobengal import DetectExoplanet
3. Create a Detector
Initialize the detector (paths default to repository models/):
detector = DetectExoplanet()
4. Make a Prediction
Use the saved RandomForest model to classify a sample:
sample = [365.0, 1.0, 288.0, 1.0, 4.44, 5778, 0.1, 5.0, 100.0]
print(detector.random_forest(sample))
5. Compute ESI
Calculate Earth Similarity Index for a candidate planet:
print(detector.calculate_esi(koi_prad=1.05, koi_teq=290))
6. Train Models
Optionally retrain the bundled models:
detector.train_random_forest("data/cumulative_2025.09.20_12.15.37.csv")
# detector.train_cnn()
# detector.train_knn()
What's Next?
Continue with tutorials or jump to the API reference:
Requirements
- Python 3.8+
- numpy
- pandas
- matplotlib
- seaborn
- scikit-learn
- joblib
- tensorflow
Need Help?
If you run into any issues, here are some resources:
- Troubleshooting Guide
- Report Issues
- Ask the AI Assistant (bottom right)