Documentation

ExoBengal Documentation - ML-Powered Exoplanet Detection

A comprehensive machine learning toolkit for exoplanet detection using NASA Kepler mission data. Train and deploy Random Forest, CNN, k-Nearest Neighbors, and Decision Tree models for planet classification.

Install via pip:

Terminal

$ 

Why Choose ExoBengal?

Four ML Models

Random Forest, CNN, k-Nearest Neighbors, and Decision Tree classifiers

Pre-trained Artifacts

Ready-to-use models trained on NASA Kepler mission data

ESI Calculation

Automatic Earth Similarity Index for habitability assessment

Cloud API

Production-ready REST API deployed on Cerebrium

Quick Example

from exobengal import DetectExoplanet, ExoParams

# Initialize detector
detector = DetectExoplanet()

# Create Earth-like parameters
params = ExoParams(
    period=365.0, prad=1.0, teq=288.0,
    srad=1.0, slog_g=4.44, steff=5778,
    impact=0.1, duration=5.0, depth=100.0
)

# Make prediction
result = detector.random_forest(params)
print(f"Prediction: {result['prediction']}")
print(f"Probability: {result['probability']:.2%}")
print(f"ESI: {result['ESI']:.3f}")
Interstellar
Background Music
30%